background image

1400 Seaport Blvd, Building B   |   Redwood City, CA 94063

ph: +1.650.241.1221   |   info@heartflow.com   |   heartflow.com

15991244 V4

Edited and Approved by 
Jonathon Leipsic MD FSCCT
Past-President Society of Cardiovascular CT

Acquisition and 

Reconstruction Techniques for 

Coronary CT Angiography

Philips Healthcare Scanner Platforms

background image

HeartFlow, Inc.   |   Acquisition and Reconstruction Techniques for Coronary CT Angiography: Philips Healthcare Scanner Platforms   |   15991244 V4

2

1. Overview
2. Introduction

Importance of Heart Rate Control
Importance of Nitrates
Selection of Tube Current and Potential

3. Recommended Protocol: PHILIPS BRILLIANCE iCT and IQon SPECTRAL CT

Surview
CTA Acquisition
CTA Post-processing (Reconstructions)
Contrast Protocol

4. Recommended Protocol: PHILIPS BRILLIANCE iCT SP

Surview
CTA Acquisition
CTA Post-processing (Reconstructions)
Contrast Protocol

5. Bibliography

Table of Contents

3
4
4
4
5
6
6
6
8
8
9
9
9

11
11
12

background image

HeartFlow, Inc.   |   Acquisition and Reconstruction Techniques for Coronary CT Angiography: Philips Healthcare Scanner Platforms   |   15991244 V4

3

1. Overview

Coronary computed tomography angiography (CCTA) is a non-invasive diagnostic for detecting coronary 
artery disease (CAD). CCTA is increasingly utilized in clinical practice for evaluating coronary anatomy for 
obstructive disease and plaque. 

It is, however, imperative that artifact free CCTA image data is obtained in order for it to be successfully 
analysed for anatomic assessment and/or to act as adequate input for adjunct analyses such as physiologic 
simulations. Data acquisition strategies and scanning protocols may vary depending on scanner manufacturer, 
system, and institutional preferences. This document provides references for reliable image acquisition  
for CCTA.

background image

HeartFlow, Inc.   |   Acquisition and Reconstruction Techniques for Coronary CT Angiography: Philips Healthcare Scanner Platforms   |   15991244 V4

4

2. Introduction

Image acquisition in computed tomography is governed ultimately by the principle of As Low As Reasonably 
Achievable (ALARA). In the first 10 years of CCTA, the focus was almost exclusively on the detection of 
anatomical stenosis in low to intermediate risk patients. With the evolution of technology, the clinical utility 
of CCTA has extended beyond stenosis assessment to atherosclerosis characterization, the evaluation of 
structural heart disease, and the functional and physiological assessment of coronary stenoses. Recently 
the SCCT acquisition guidelines were updated and provide an excellent reference for Cardiac CT imaging 
specialists to help optimize their scan protocols. That being said, given the growing information that is 
provided from cardiac CT, the imaging requirements have evolved and require tailoring to meet the clinical 
indication. The purpose of this white paper is to highlight the parameters and image acquisition protocols that 
are important to help optimize image quality, provide accurate representation of anatomy and thus enable 
quantitative CT. 

Importance of Heart Rate Control

With the advancements in scanner technology, the necessary requirement for heart rate reduction has 
decreased over time. The demands for a low and steady heart rate to ensure diagnostic image quality may not 
be what they once were but best practice remains to optimize image quality through heart rate control. SCCT 
guidelines recommend performing CCTA with heart rates below 60 bpm.

In addition, CCTA no longer simply provides stenosis evaluation but needs to enable the interpreting physician 
to identify and characterize plaque and, following the identification of a stenosis, to perform functional or 
physiologic evaluation. As a result, while latest generation CT scanners may enable diagnostic image quality 
at higher heart rates, there remains meaningful image quality benefits from heart rate reduction. In addition, 
lower heart rates allow the use of lower dose scan acquisitions that are not possible at higher heart rates. Heart 
rate control strategies are well established and the appropriate strategy is dependent on a number of variables 
including available medications, setting of practice and site preference. For recommendations please refer to 
the recently updated SCCT acquisition guidelines.

Importance of Nitrates 

Nitrates as smooth muscle dilators have direct effect on coronary vasodilation and result in tangible 
enlargement of coronary size. As such, similar to invasive coronary catheterization, nitroglycerine (glyceryl 
trinitrate) should be administered prior to CCTA to optimize image quality and enable the most accurate 
stenosis evaluation. A commonly used regimen is 400-800 µg of sublingual nitroglycerin administered as either 
sublingual tablets or a metered lingual spray (commonly 1-2 tablets or 1-2 sprays) prior to the CCTA. While 
the evidence is modest and there is no randomized data, both a higher dose and administration via spray are 
becoming increasingly preferred in clinical practice and have been shown to help optimize coronary evaluation.

background image

HeartFlow, Inc.   |   Acquisition and Reconstruction Techniques for Coronary CT Angiography: Philips Healthcare Scanner Platforms   |   15991244 V4

5

Selection of Tube Current and Potential

The scan parameters used for any cardiac CT should be tailored to the individual patient but also the intended 
application. The image quality issues with the greatest impact on the interpretability of CT are misalignment 
and image noise. As such, care must be given to ensure that image noise properties are appropriate and 
adequate for accurate lumen segmentation. To do so, tube current and potential should be selected carefully, 
guided by chest wall circumference, the iodine concentration of the intravenous contrast medium, and whether 
iterative reconstruction is available or not.

Iterative reconstruction (IR) has the ability to reduce image noise in CT without compromising the diagnostic 
quality of the CT image dataset, which permits a significant reduction in effective radiation dose. In current 
clinical practice, IR has enabled a significant reduction in radiation dose by allowing for a reduction in tube 
current and is now increasingly available across all cardiac capable CT scanners. IR commonly takes the form 
of a blended reconstruction of IR and filtered back projection (FBP). While a very helpful tool, care should 
be given when using a very high percentage of IR for quantitative CT analysis due to the potential impact on 
vessel segmentation.

background image

HeartFlow, Inc.   |   Acquisition and Reconstruction Techniques for Coronary CT Angiography: Philips Healthcare Scanner Platforms   |   15991244 V4

6

3. Recommended Protocol:

PHILIPS BRILLIANCE iCT and IQon

SPECTRAL CT

1. Surview

General

Data Acquisition

Comments

Lateral and AP surview covering the 

heart and coronaries 

• AP Surview: 120kVp/50mA
• Lat Surview: 120kVp/100mA
• Surview Angle: Dual
• Surview Length (mm): 300
• Surview FOV: 500
• Surview Auto Voice: S Ins
• Surview Breathing Lights: Yes

Position the patient for AP surview to 

acquire AP and lateral surview. 

Offset the patient to the right so the 

heart is at the center of the scan field. 

Place the patient's arms above their 

head with the ECG leads outside the 

scan range.
Have the patient practice breath-

holding before starting the 

examination. This should be a single 

"breathe in and hold" command.

2. CTA Acquisition

General

Data Acquisition

Data Reconstruction

Acquiring CT coronary Angiogram

Helical CCTA Acquisition
• kV: 120 or 100 when appropriate
• mAs: 800 (standard patients), 

1000 (large patients)

• Scan Type: Cardiac
• DoseRight: Off
• Cardiac DoseRight: On
• Collimation: Auto
• Pitch: 0.16
• Rotation Time: 0.27
• No of cycles/scan: N/A
• Scan time 5.30 seconds
• Resolution: STD
• Auto Voice: s.insp.

Stepandshoot,breath (longer

instruction with longer delay

at end)

• Breathing Lights: Yes
• Auto Pitch & RT based on HR: No
• ECG Gating Phase: 78%
• Handle irregularities On-line: Yes

Coronary CTA (Acquisition)
• Field of View limited to the heart

(220 mm)

• Slice thickness 0.8mm
• Increment 0.4mm
• Acquisition Length (mm) 140.4
• Result Scan Length (mm): 140.4

background image

HeartFlow, Inc.   |   Acquisition and Reconstruction Techniques for Coronary CT Angiography: Philips Healthcare Scanner Platforms   |   15991244 V4

7

2. CTA Acquisition (contd.)

General

Data Acquisition

Data Reconstruction

Step & Shoot (Acquisition)
• kV: 120
• mAs: 155 to 200 if phase

tolerance = 0
phase tolerance = 5, system will
recommend more mAs

• Scan Type: Cardiac
• Collimation: Auto
• DoseRight: Off
• Cardiac DoseRight: On
• Pitch: N/A
• No of cycles/scan: IQon 4, iCT 2
• Scan time: 4-9 seconds
• Rotation Time: 0.27
• Resolution: STD
• Auto Voice: s.insp.

Stepandshoot,breath (longer

instruction with longer delay

at end)

• Breathing Lights: Yes
• Auto Pitch & RT based on HR: N/A
• ECG Gating Phase: 78%
• Handle irregularities On-line: Yes
• ECG Gating Phase Tolerance: 5%

Step & Shoot (Acquisition)
• Field of View limited to the heart

(220 mm)

• Slice thickness 0.8mm
• Increment 0.4mm
• Acquisition Length (mm) 144.5
• Result Scan Length (mm): 140.8

background image

HeartFlow, Inc.   |   Acquisition and Reconstruction Techniques for Coronary CT Angiography: Philips Healthcare Scanner Platforms   |   15991244 V4

8

3. CTA Post-processing (Reconstructions)

General

Data Acquisition

Data Reconstruction

Coronary CTA (Acquisition)
• Reconstructions: Standard
• iMR Level: None
• iDose Level: 3 to 5
• Filter: XCB and XCC
• Single Cycle Reconstruction: No
• ECG Gating Recon Phase: 78%
• Edge Correction: N/A

Step & Shoot (Acquisition)
• Reconstructions: Standard
• iMR Level: None
• iDose Level: 3 to 5
• Filter: XCB and XCC
• Single Cycle Reconstruction: No
• ECG Gating Recon Phase: 78%
• Edge Correction: No

4. Contrast Protocol

General

Parameter

Comments

The injection rate should be 

increased for shorter scan times and 

larger patients! 
CTA requires contrast medium with 

an iodine concentration of at least 

350 mgI/mL. 
Place a 20- or 18-gauge IV cannula in 

the RIGHT arm.

Coronary CTA & Large (Acquisition)
• Bolus Tracking: Yes
• Trigger: 100 HU over blood

base line

• Post Threshold Delay: 5 Seconds

Step & Shoot (Acquisition)
• Bolus Tracking: Yes
• Trigger: 100 HU over blood

base line

• Post Threshold Delay: 7 Seconds

background image

HeartFlow, Inc.   |   Acquisition and Reconstruction Techniques for Coronary CT Angiography: Philips Healthcare Scanner Platforms   |   15991244 V4

9

4. Recommended Protocol:

PHILIPS BRILLIANCE iCT SP

1. Surview

General

Data Acquisition

Comments

Lateral and AP surview covering the 

heart and coronaries 

• AP Surview: 120kVp/50mA
• Lat Surview: 120kVp/100mA
• Surview Angle: Dual
• Surview Length (mm): 300
• Surview FOV: 500
• Surview Auto Voice: S Ins
• Surview Breathing Lights: Yes

Position the patient for AP surview to 

acquire AP and lateral surview. 

Offset the patient to the right so the 

heart is at the center of the scan field. 

Place the patient's arms above their 

head with the ECG leads outside the 

scan range.
Have the patient practice breath-

holding before starting the 

examination. This should be a single 

"breathe in and hold" command.

2. CTA Acquisition

General

Data Acquisition

Data Reconstruction

Acquiring CT coronary Angiogram

Helical CCTA Acquisition
• kV: 120
• mAs: 800 (standard patients), 

1000 (large patients)

• Scan Type: Cardiac
• DoseRight: Off
• Cardiac DoseRight: On
• Collimation: Auto
• Pitch: 0.16
• Rotation Time: 0.27
• No of cycles/scan: N/A
• Scan time 8.20 seconds
• Resolution: STD
• Auto Voice: s.insp.

Stepandshoot,breath (longer

instruction with longer delay

at end)

• Breathing Lights: Yes
• Auto Pitch & RT based on HR: No
• ECG Gating Phase: 78%
• Handle irregularities On-line: Yes

Helical CCTA Acquisition
• Field of View limited to the heart

(220 mm)

• Slice thickness 0.8mm
• Increment 0.4mm
• Acquisition Length (mm) 140.4
• Result Scan Length (mm): 140.4

background image

HeartFlow, Inc.   |   Acquisition and Reconstruction Techniques for Coronary CT Angiography: Philips Healthcare Scanner Platforms   |   15991244 V4

10

2. CTA Acquisition (contd.)

General

Data Acquisition

Data Reconstruction

Step & Shoot CCTA Acquisition
• kV: 120
• mAs: 155
• Scan Type: Cardiac
• Collimation: Auto
• DoseRight: Off
• Cardiac DoseRight: On
• Pitch: N/A
• No of cycles/scan: 4
• Scan time: 9.17 seconds
• Rotation Time: 0.27
• Resolution: STD
• Auto Voice: s.insp.

Stepandshoot,breath (longer

instruction with longer delay

at end)

• Breathing Lights: Yes
• Auto Pitch & RT based on HR: N/A
• ECG Gating Phase: 78%

irregularities On-line: Yes

• ECG Gating Phase Tolerance: 5%

Step & Shoot CCTA Acquisition
• Field of View limited to the heart

(220 mm)

• Slice thickness 0.8mm
• Increment 0.4mm
• Acquisition Length (mm) 144.5
• Result Scan Length (mm): 134.8

background image

HeartFlow, Inc.   |   Acquisition and Reconstruction Techniques for Coronary CT Angiography: Philips Healthcare Scanner Platforms   |   15991244 V4

11

3. CTA Post-processing (Reconstructions)

General

Data Acquisition

Data Reconstruction

Acquiring CT coronary Angiogram

Coronary CTA (Acquisition)
• Reconstructions: Standard
• iMR Level: None
• iDose Level: 3 to 5
• Filter: XCB and XCC
• Single Cycle Reconstruction: No
• ECG Gating Recon Phase: 78%
• Edge Correction: N/A

Step & Shoot (Acquisition)
• Reconstructions: Standard
• iMR Level: None
• iDose Level: 3 to 5
• Filter: XCB and XCC
• Single Cycle Reconstruction: No
• ECG Gating Recon Phase: 78%
• Edge Correction: No

4. Contrast Protocol

General

Parameter

Comments

The injection rate should be 

increased for shorter scan times and 

larger patients! 
CTA requires contrast medium with 

an iodine concentration of at least 

350 mgI/mL. 
Place a 20- or 18-gauge IV cannula in 

the RIGHT arm.

Coronary CTA & Large (Acquisition)
• Bolus Tracking: Yes
• Trigger: 100 HU over blood

base line

• Post Threshold Delay: 5 Seconds

Step & Shoot (Acquisition)
• Bolus Tracking: Yes
• Trigger: 100 HU over blood

base line

• Post Threshold Delay: 7 Seconds

background image

HeartFlow, Inc.   |   Acquisition and Reconstruction Techniques for Coronary CT Angiography: Philips Healthcare Scanner Platforms   |   15991244 V4

12

5. Bibliography

1. Dewey M, Hoffmann H, Hamm B. Multislice CT coronary angiography: effect of sublingual nitroglycerine

on the diameter of coronary arteries. RoFo: Fortschritte auf dem Gebiete der Rontgenstrahlen und der
Nuklearmedizin. 2006;178(6):600-4.

2. Decramer I, Vanhoenacker PK, Sarno G, Van Hoe L, Bladt O, Wijns W, et al. Effects of sublingual

nitroglycerin on coronary lumen diameter and number of visualized septal branches on 64-MDCT
angiography. American Journal of Roentgenology. 2008;190(1):219-25.

3. Laslett LJ, Baker L. Sublingual nitroglycerin administered by spray versus tablet: comparative timing of

hemodynamic effects. Cardiology. 1990;77(4):303-10.

4. Bachmann KF, Gansser RE. Nitroglycerin oral spray: evaluation of its coronary artery dilative action by

quantitative angiography. The American journal of cardiology. 1988;61(9):7E-11E.

5. Sato K, et al. Optimal starting time of acquisition and feasibility of complementary administration of

nitroglycerin with intravenous beta-blocker in multislice computed tomography. JCCT. 2009;33(2):193)

6. Abbara S, Blanke P, Maroules CD, Cheezum M, Choi AD, Han BK, Marwan M, Naoum C, Norgaard BL,

Rubinshtein R, Schoenhagen P, Villines T, Leipsic J. SCCT guidelines for the performance and acquisition
of coronary computed tomographic angiography: A report of the society of Cardiovascular Computed
Tomography Guidelines Committee: Endorsed by the North American Society for Cardiovascular Imaging
(NASCI). J Cardiovasc Comput Tomogr. 2016 Oct 12. pii: S1934-5925(16)30239-8.

7.  Leipsic J, Abbara S, Achenbach S, Cury R, Earls JP, Mancini GJ, et al. SCCT guidelines for the interpretation

and reporting of coronary CT angiography: a report of the Society of Cardiovascular Computed
Tomography Guidelines Committee. Journal of cardiovascular computed tomography. 2014;8(5):342-58.

8. Budoff MJ, Dowe D, Jollis JG, Gitter M, Sutherland J, Halamert E, et al. Diagnostic performance of

64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery
stenosis in individuals without known coronary artery disease: results from the prospective multicenter
ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing
Invasive Coronary Angiography) trial. Journal of the American College of Cardiology. 2008;52(21):1724-32.

9. Meijboom WB, Meijs MF, Schuijf JD, Cramer MJ, Mollet NR, van Mieghem CA, et al. Diagnostic accuracy

of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study.
Journal of the American College of Cardiology. 2008;52(25):2135-44.

10. Miller JM, Rochitte CE, Dewey M, Arbab-Zadeh A, Niinuma H, Gottlieb I, et al. Diagnostic performance of

coronary angiography by 64-row CT. The New England journal of medicine. 2008;359(22):2324-36.

11. Min JK, Shaw LJ, Devereux RB, Okin PM, Weinsaft JW, Russo DJ, et al. Prognostic value of multidetector

coronary computed tomographic angiography for prediction of all-cause mortality. Journal of the
American College of Cardiology. 2007;50(12):1161-70.

background image

HeartFlow, Inc.   |   Acquisition and Reconstruction Techniques for Coronary CT Angiography: Philips Healthcare Scanner Platforms   |   15991244 V4

13

12. Min JK, Dunning A, Lin FY, Achenbach S, Al-Mallah M, Budoff MJ, et al. Age- and sex-related differences

in all-cause mortality risk based on coronary computed tomography angiography findings results from
the International Multicenter CONFIRM (Coronary CT Angiography Evaluation for Clinical Outcomes: An
International Multicenter Registry) of 23,854 patients without known coronary artery disease. Journal of the
American College of Cardiology. 2011;58(8):849-60.

13. Villines TC, Hulten EA, Shaw LJ, Goyal M, Dunning A, Achenbach S, et al. Prevalence and severity of

coronary artery disease and adverse events among symptomatic patients with coronary artery calcification
scores of zero undergoing coronary computed tomography angiography: results from the CONFIRM
(Coronary CT Angiography Evaluation for Clinical Outcomes: An International Multicenter) registry. Journal
of the American College of Cardiology. 2011;58(24):2533-40.

14. Leipsic J, Taylor CM, Gransar H, Shaw LJ, Ahmadi A, Thompson A, et al. Sex-based prognostic implications

of nonobstructive coronary artery disease: results from the international multicenter CONFIRM study.
Radiology. 2014;273(2):393-400.

15. Taylor AJ, Cerqueira M, Hodgson JM, Mark D, Min J, O'Gara P, et al. ACCF/SCCT/ACR/AHA/ASE/

ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography. A report
of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society
of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart
Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology,
the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and
Interventions, and the Society for Cardiovascular Magnetic Resonance. Journal of the American College of
Cardiology. 2010;56(22):1864-94.

16. Jacobs JE, Boxt LM, Desjardins B, Fishman EK, Larson PA, Schoepf J, et al. ACR practice guideline for the

performance and interpretation of cardiac computed tomography (CT). Journal of the American College of
Radiology : JACR. 2006;3(9):677-85.

17. Halliburton SS, Abbara S, Chen MY, Gentry R, Mahesh M, Raff GL, et al. SCCT guidelines on radiation dose

and dose-optimization strategies in cardiovascular CT. Journal of cardiovascular computed tomography.
2011;5(4):198-224.

18. Valentin J. Pregnancy and medical radiation: ICRP publication 84. . Ann ICRP 2000(30(1)):1-39.
19. Chen MM, Coakley FV, Kaimal A, Laros RK, Jr. Guidelines for computed tomography and magnetic

resonance imaging use during pregnancy and lactation. Obstet Gynecol. 2008;112(2 Pt 1):333-340.

20. Woussen S1, Lopez-Rendon X, Vanbeckevoort D, Bosmans H, Oyen R, Zanca F. Clinical indications and

radiation doses to the conceptus associated with CT imaging in pregnancy: a retrospective study. Eur
Radiol. 2015 Jul 23.

21. Webb JA, Thomsen HS, Morcos SK, Members of Contrast Media Safety Committee of European Society

of Urogenital R. The use of iodinated and gadolinium contrast media during pregnancy and lactation.
European radiology. 2005;15(6):1234-40.

background image

HeartFlow, Inc.   |   Acquisition and Reconstruction Techniques for Coronary CT Angiography: Philips Healthcare Scanner Platforms   |   15991244 V4

14

22. Rubin G, Bluemke D, Duerinckx A, Flamm S, Grist T, Jacobs J, et al. ACR Committee on Cardiac Imaging.

Practice guideline for the performance and interpretation of cardiac computed tomography (CT). (Res. 10,
16g, 17, 34, 35, 36 – 2006) In: Practice Guidelines and Technical Standards. Reston, VA: American College
of Radiology. 2008;421-30.

23. Greenberger P, Patterson R. Prednisone-diphenhydramine regimen prior to use of radiographic contrast

media. The Journal of allergy and clinical immunology. 1979;63(4):295.

24. Zeiher AM, Schachinger V, Minners J. Long-term cigarette smoking impairs endothelium-dependent

coronary arterial vasodilator function. Circulation. 1995;92(5):1094-100.

25. Quillen JE, Rossen JD, Oskarsson HJ, Minor RL, Jr., Lopez AG, Winniford MD. Acute effect of cigarette

smoking on the coronary circulation: constriction of epicardial and resistance vessels. Journal of the
American College of Cardiology. 1993;22(3):642-7.

26. Elicker BM, Cypel YS, Weinreb JC. IV contrast administration for CT: a survey of practices for the screening

and prevention of contrast nephropathy. AJR American journal of roentgenology. 2006;186(6):1651-8.

27. Lee JK, Warshauer DM, Bush WH, Jr., McClennan BL, Choyke PL. Determination of serum creatinine

level before intravenous administration of iodinated contrast medium. A survey. Investigative radiology.
1995;30(12):700-5.

28. Owen RJ, Hiremath S, Myers A, Fraser-Hill M, Barrett BJ. Canadian Association of Radiologists consensus

guidelines for the prevention of contrast-induced nephropathy: update 2012. Canadian Association of
Radiologists journal = Journal l'Association canadienne des radiologistes. 2014;65(2):96-105.

29. Owen at al. Canadian Association of Radiologists consensus guidelines for the prevention of contrast-

induced nephropathy. Can Assoc Radiol J. 2014 May;65(2):96-105

30. Briguori C, Airoldi F, D'Andrea D, Bonizzoni E, Morici N, Focaccio A, et al. Renal Insufficiency Following

Contrast Media Administration Trial (REMEDIAL): a randomized comparison of 3 preventive strategies.
Circulation. 2007;115(10):1211-7.

31. Briguori C, Colombo A, Violante A, Balestrieri P, Manganelli F, Paolo Elia P, et al. Standard vs double

dose of N-acetylcysteine to prevent contrast agent associated nephrotoxicity. European heart journal.
2004;25(3):206-11.

32. Lee PT, Chou KJ, Liu CP, Mar GY, Chen CL, Hsu CY, et al. Renal protection for coronary angiography in

advanced renal failure patients by prophylactic hemodialysis. A randomized controlled trial. Journal of the
American College of Cardiology. 2007;50(11):1015-20.

33. Marenzi G, Assanelli E, Marana I, Lauri G, Campodonico J, Grazi M, et al. N-acetylcysteine and contrast-

induced nephropathy in primary angioplasty. The New England journal of medicine. 2006;354(26):2773-82.

34. McDonald R, Mdcondal J, Bida Jet al Intravenous Contrast Material–induced Nephropathy:
35. Causal or Coincident Phenomenon?. RadiologyVolume 267: Number 1—April 2013

background image

HeartFlow, Inc.   |   Acquisition and Reconstruction Techniques for Coronary CT Angiography: Philips Healthcare Scanner Platforms   |   15991244 V4

15

36. Newhouse JH, Kho D, Rao QA, Starren J. Frequency of serum creatinine changes in the absence of

iodinated contrast material: implications for studies of contrast nephrotoxicity. AJR American journal of
roentgenology. 2008;191(2):376-82.

37. McDonald RJ, McDonald JS, Carter RE, Hartman RP, Katzberg RW, Kallmes DF, et al. Intravenous contrast

material exposure is not an independent risk factor for dialysis or mortality. Radiology. 2014;273(3):714-25.

38. Owen RJ, Hiremath S, Myers A, Fraser-Hill M, Barrett BJ. Canadian Association of Radiologists consensus

guidelines for the prevention of contrast-induced nephropathy: update 2012. Canadian Association of
Radiologists journal = Journal l'Association canadienne des radiologistes. 2014;65(2):96-105.

39. Ahuja TS, Niaz N, Agraharkar M. Contrast-induced nephrotoxicity in renal allograft recipients. Clinical

nephrology. 2000;54(1):11-4.

40. Brodoefel H, Reimann A, Heuschmid M, Kuttner A, Beck T, Burgstahler C, et al. Non-invasive coronary

angiography with 16-slice spiral computed tomography: image quality in patients with high heart rates.
European radiology. 2006;16(7):1434-41.

41. Cademartiri F, Mollet NR, Runza G, Belgrano M, Malagutti P, Meijboom BW, et al. Diagnostic accuracy of

multislice computed tomography coronary angiography is improved at low heart rates. The international
journal of cardiovascular imaging. 2006;22(1):101-5; discussion 7-9.

42. Achenbach S, Manolopoulos M, Schuhback A, Ropers D, Rixe J, Schneider C, et al. Influence of heart rate

and phase of the cardiac cycle on the occurrence of motion artifact in dual-source CT angiography of the
coronary arteries. Journal of cardiovascular computed tomography. 2012;6(2):91-8.

43. Le Jemtel TH, Padeletti M, Jelic S. Diagnostic and therapeutic challenges in patients with coexistent chronic

obstructive pulmonary disease and chronic heart failure. Journal of the American College of Cardiology.
2007;49(2):171-80.

44. Maffei E, Palumbo AA, Martini C, Tedeschi C, Tarantini G, Seitun S, et al. "In-house" pharmacological

management for computed tomography coronary angiography: heart rate reduction, timing and safety of
different drugs used during patient preparation. European radiology. 2009;19(12):2931-40.

45. Roberts WT, Wright AR, Timmis JB, Timmis AD. Safety and efficacy of a rate control protocol for cardiac CT.

The British journal of radiology. 2009;82(976):267-71.

46. 40. Earls et al JCCT Metoprolol
47. Sadamatsu K, Koide S, Nakano K, Yoshida K. Heart rate control with single administration of a long-acting

beta-blocker at bedtime before coronary computed tomography angiography. Journal of cardiology.
2015;65(4):293-7.

48. Clayton B, Raju V, Roobottom C, Morgan-Hughes G. Safety of intravenous beta-adrenoceptor blockers for

computed tomographic coronary angiography. British journal of clinical pharmacology. 2015;79(3):533-6.

49. Kassamali RH, Kim DH, Patel H, Raichura N, Hoey ET, Hodson J, et al. Safety of an i.v. beta-adrenergic

blockade protocol for heart rate optimization before coronary CT angiography. AJR American journal of
roentgenology. 2014;203(4):759-62.

background image

HeartFlow, Inc.   |   Acquisition and Reconstruction Techniques for Coronary CT Angiography: Philips Healthcare Scanner Platforms   |   15991244 V4

16

50. Wang JD, Zhang HW, Xin Q, Yang JJ, Sun ZJ, Liu HB, et al. Safety and efficacy of intravenous esmolol before

prospective electrocardiogram-triggered high-pitch spiral acquisition for computed tomography coronary
angiography. Journal of geriatric cardiology : JGC. 2014;11(1):39-43.

51. Dobre D, Borer JS, Fox K, Swedberg K, Adams KF, Cleland JG, et al. Heart rate: a prognostic factor and

therapeutic target in chronic heart failure. The distinct roles of drugs with heart rate-lowering properties.
European journal of heart failure. 2014;16(1):76-85.

52. Pichler P, Pichler-Cetin E, Vertesich M, Mendel H, Sochor H, Dock W, et al. Ivabradine versus metoprolol

for heart rate reduction before coronary computed tomography angiography. The American journal of
cardiology. 2012;109(2):169-73.

53. Celik O, Atasoy MM, Erturk M, Yalcin AA, Aksu HU, Diker M, et al. Comparison of different strategies of

ivabradine premedication for heart rate reduction before coronary computed tomography angiography.
Journal of cardiovascular computed tomography. 2014;8(1):77-82.

54. Guaricci AI, Schuijf JD, Cademartiri F, Brunetti ND, Montrone D, Maffei E, et al. Incremental value and safety

of oral ivabradine for heart rate reduction in computed tomography coronary angiography. International
journal of cardiology. 2012;156(1):28-33.

55. Guaricci AI, Maffei E, Brunetti ND, Montrone D, Di Biase L, Tedeschi C, et al. Heart rate control with oral

ivabradine in computed tomography coronary angiography: a randomized comparison of 7.5 mg vs 5 mg
regimen. International journal of cardiology. 2013;168(1):362-8.

56. Adile KK, Kapoor A, Jain SK, Gupta A, Kumar S, Tewari S, et al. Safety and efficacy of oral ivabradine as

a heart rate-reducing agent in patients undergoing CT coronary angiography. The British journal of
radiology. 2012;85(1016):e424-8.

57. Cademartiri F, Garot J, Tendera M, Zamorano JL. Intravenous ivabradine for control of heart rate during

coronary CT angiography: A randomized, double-blind, placebo-controlled trial. Journal of cardiovascular
computed tomography. 2015;9(4):286-94.

58. Parker JD, Parker JO. Nitrate therapy for stable angina pectoris. The New England journal of medicine.

1998;338(8):520-31.

59. Dewey M, Hoffmann H, Hamm B. Multislice CT coronary angiography: effect of sublingual nitroglycerine

on the diameter of coronary arteries. RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der
Nuklearmedizin. 2006;178(6):600-4.

60. Decramer I, Vanhoenacker PK, Sarno G, Van Hoe L, Bladt O, Wijns W, et al. Effects of sublingual

nitroglycerin on coronary lumen diameter and number of visualized septal branches on 64-MDCT
angiography. AJR American journal of roentgenology. 2008;190(1):219-25.

61. Laslett LJ, Baker L. Sublingual nitroglycerin administered by spray versus tablet: comparative timing of

hemodynamic effects. Cardiology. 1990;77(4):303-10.

62. Bachmann KF, Gansser RE. Nitroglycerin oral spray: evaluation of its coronary artery dilative action by

quantitative angiography. The American journal of cardiology. 1988;61(9):7E-11E.

background image

HeartFlow, Inc.   |   Acquisition and Reconstruction Techniques for Coronary CT Angiography: Philips Healthcare Scanner Platforms   |   15991244 V4

17

63. Sato K, et al. Optimal starting time of acquisition and feasibility of complementary administration of

nitroglycerin with intravenous beta-blocker in multislice computed tomography. JCCT. 2009;33(2):193)

64. Chun EJ et al J. Effects of nitroglycerin on the diagnostic accuracy of electrocardiogram-gated coronary

computed tomography angiography. JCCT. 2008;32(1):86-92)

65. Wang G, Vannier MW. Spatial variation of section sensitivity profile in spiral computed tomography.

Medical physics. 1994;21(9):1491-7.

66. Ohnesorge B, Flohr T, Becker C, Kopp AF, Schoepf UJ, Baum U, et al. Cardiac imaging by means of

electrocardiographically gated multisection spiral CT: initial experience. Radiology. 2000;217(2):564-71.

67. Halliburton SS, Abbara S. Practical tips and tricks in cardiovascular computed tomography: patient

preparation for optimization of cardiovascular CT data acquisition. Journal of cardiovascular computed
tomography. 2007;1(1):62-5.

68. Bae KT, Tran HQ, Heiken JP. Multiphasic injection method for uniform prolonged vascular enhancement

at CT angiography: pharmacokinetic analysis and experimental porcine model. Radiology.
2000;216(3):872-80.

69. Fleischmann D, Rubin GD, Bankier AA, Hittmair K. Improved uniformity of aortic enhancement with

customized contrast medium injection protocols at CT angiography. Radiology. 2000;214(2):363-71.

70. Haage P, Schmitz-Rode T, Hubner D, Piroth W, Gunther RW. Reduction of contrast material dose and

artifacts by a saline flush using a double power injector in helical CT of the thorax. AJR American journal of
roentgenology. 2000;174(4):1049-53.

71. Hopper KD, Mosher TJ, Kasales CJ, TenHave TR, Tully DA, Weaver JS. Thoracic spiral CT: delivery of contrast

material pushed with injectable saline solution in a power injector. Radiology. 1997;205(1):269-71.

72. Raju R, Thompson AG, Lee K, Precious B, Yang TH, Berger A, et al. Reduced iodine load with CT coronary

angiography using dual-energy imaging: a prospective randomized trial compared with standard coronary
CT angiography. Journal of cardiovascular computed tomography. 2014;8(4):282-8.

73. Carrascosa P, Leipsic JA, Capunay C, Deviggiano A, Vallejos J, Goldsmit A, et al. Monochromatic

image reconstruction by dual energy imaging allows half iodine load computed tomography coronary
angiography. European journal of radiology. 2015.

74. Yin WH, Lu B, Gao JB, Li PL, Sun K, Wu ZF, et al. Effect of reduced x-ray tube voltage, low iodine

concentration contrast medium, and sinogram-affirmed iterative reconstruction on image quality and
radiation dose at coronary CT angiography: results of the prospective multicenter REALISE trial. Journal of
cardiovascular computed tomography. 2015;9(3):215-24.

75. Hein PA, May J, Rogalla P, Butler C, Hamm B, Lembcke A. Feasibility of contrast material volume reduction

in coronary artery imaging using 320-slice volume CT. European radiology. 2010;20(6):1337-43.

76. Kim R, et al.  Feasibility of 320-row CT coronary angiography using 40 mL…Eur Radiol. 2016; Feb 23 (Epub

ahead of print).

background image

HeartFlow, Inc.   |   Acquisition and Reconstruction Techniques for Coronary CT Angiography: Philips Healthcare Scanner Platforms   |   15991244 V4

18

77. Marwan et al Radiology High Pitch TAVR
78. Segal A, Ellis J, Baumgartner B, Choyke P, Cohan R, Costouros N, et al. ACR Committee on Drugs and

Contrast Media. Practice guideline for the use of intravascular contrast media. (Res. 38 – 2007) In: Practice
Guidelines and Technical Standards. Reston, VA: . American College of Radiology. 2008;73-78.

79. Brenner DJ, Doll R, Goodhead DT, Hall EJ, Land CE, Little JB, et al. Cancer risks attributable to low doses of

ionizing radiation: assessing what we really know. Proceedings of the National Academy of Sciences of the
United States of America. 2003;100(24):13761-6.

80. Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation; Nuclear and

Radiation Studies Board, Division on Earth and Life Studies, National Research Council of the National
Academies. Health Risks From Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2. Washington,
DC: The National Academies Press. 2006.

81. Don S. Radiosensitivity of children: potential for overexposure in CR and DR and magnitude of doses in

ordinary radiographic examinations. Pediatric radiology. 2004;34 Suppl 3:S167-72; discussion S234-41.

82. Einstein AJ, Henzlova MJ, Rajagopalan S. Estimating risk of cancer associated with radiation exposure

from 64-slice computed tomography coronary angiography. JAMA : the journal of the American Medical
Association. 2007;298(3):317-23.

83. Deseive S, Chen MY, Korosoglou G, Leipsic J, Martuscelli E, Carrascosa P, et al. Prospective Randomized

Trial on Radiation Dose Estimates of CT Angiography Applying Iterative Image Reconstruction: The
PROTECTION V Study. JACC Cardiovascular imaging. 2015;8(8):888-96.

84. Deseive S, Pugliese F, Meave A, Alexanderson E, Martinoff S, Hadamitzky M, et al. Image quality and

radiation dose of a prospectively electrocardiography-triggered high-pitch data acquisition strategy for
coronary CT angiography: The multicenter, randomized PROTECTION IV study. Journal of cardiovascular
computed tomography. 2015;9(4):278-85.

85. Hausleiter J, Martinoff S, Hadamitzky M, Martuscelli E, Pschierer I, Feuchtner GM, et al. Image quality

and radiation exposure with a low tube voltage protocol for coronary CT angiography results of the
PROTECTION II Trial. JACC Cardiovascular imaging. 2010;3(11):1113-23.

86. Hausleiter J, Meyer TS, Martuscelli E, Spagnolo P, Yamamoto H, Carrascosa P, et al. Image quality and

radiation exposure with prospectively ECG-triggered axial scanning for coronary CT angiography:
the multicenter, multivendor, randomized PROTECTION-III study. JACC Cardiovascular imaging.
2012;5(5):484-93.

87. Chen MY, et al.  Submillisievert median radiation dose for coronary angiography with a second-generation

320-detector row CTscanner in 107 consecutive patients.  Radiology. 2013 Apr;267(1):76-85. doi: 10.1148/
radiol.13122621. Epub 2013 Jan 22.

88. Zhao L, Plank F, Kummann M, Burghard P, Klauser A, Dichtl W, Feuchtner G. Improved non-calcified plaque

delineation on coronary CT angiography by sonogram-affirmed iterative reconstruction withdifferent filter
strength and relationship with BMI. Cardiovasc Diagn Ther. 2015 Apr;5(2):104-12.

background image

HeartFlow, Inc.   |   Acquisition and Reconstruction Techniques for Coronary CT Angiography: Philips Healthcare Scanner Platforms   |   15991244 V4

19

89. Task Group on Control of Radiation Dose in Computed T. Managing patient dose in computed

tomography. A report of the International Commission on Radiological Protection. Annals of the ICRP.
2000;30(4):7-45.

90. Hausleiter J, Meyer T, Hadamitzky M, Huber E, Zankl M, Martinoff S, et al. Radiation dose estimates from

cardiac multislice computed tomography in daily practice: impact of different scanning protocols on
effective dose estimates. Circulation. 2006;113(10):1305-10.

91. Siegel MJ, Schmidt B, Bradley D, Suess C, Hildebolt C. Radiation dose and image quality in pediatric CT:

effect of technical factors and phantom size and shape. Radiology. 2004;233(2):515-22.

92. Leipsic J, LaBounty TM, Mancini GB, Heilbron B, Taylor C, Johnson MA, et al. A prospective randomized

controlled trial to assess the diagnostic performance of reduced tube voltage for coronary CT
angiography. AJR American journal of roentgenology. 2011;196(4):801-6.

93. Oda S, Utsunomiya D, Funama Y, Yonenaga K, Namimoto T, Nakaura T, et al. A hybrid iterative

reconstruction algorithm that improves the image quality of low-tube-voltage coronary CT angiography.
AJR American journal of roentgenology. 2012;198(5):1126-31.

94. Williams MC, Weir NW, Mirsadraee S, Millar F, Baird A, Minns F, et al. Iterative reconstruction and

individualized automatic tube current selection reduce radiation dose while maintaining image quality in
320-multidetector computed tomography coronary angiography. Clinical radiology. 2013;68(11):e570-7.

95. Deseive S, Pugliese F, Meave A, Alexanderson E, Martinoff S, Hadamitzky M, et al. Image quality and

radiation dose of a prospectively electrocardiography-triggered high-pitch data acquisition strategy for
coronary CT angiography: The multicenter, randomized PROTECTION IV study. Journal of cardiovascular
computed tomography. 2015;9(4):278-85.

This paper is presented as a service to medical personnel by HeartFlow and Philips. The information in this white paper has been compiled 
from available literature and best practices from expert users. Although every effort has been made to faithfully convey this information, the 
editors and publisher cannot be held responsible for their correctness. This paper is not intended to be, and should not be construed as, 
medical advice. For any use, the product information guides, inserts, and operation manuals of the various CT acquisition devices should 
be consulted. HeartFlow and the editors disclaim any liability arising directly or indirectly from the use of drugs, devices, techniques, or 
procedures described in this paper. 

WARNING: Any references to x-ray exposure, intravenous contrast dosage, and other medication are intended as reference guidelines only. 
The guidelines in this document do not substitute for the judgment of a trained healthcare provider. Each scan requires medical judgment by 
the healthcare provider about exposing the patient to ionizing radiation. Use the As Low As Reasonably Achievable (ALARA) radiation dose 
principle to balance factors such as the patient’s condition, size and age; region to be imaged; and diagnostic task.

background image

© 2020 HeartFlow, Inc. HeartFlow and the HeartFlow logo are among trademarks of HeartFlow, Inc. 

15991244 V4

1400 Seaport Blvd, Building B   |   Redwood City, CA 94063

ph: +1.650.241.1221   |   info@heartflow.com   |   heartflow.com